古希腊哲学家毕达哥拉斯被认为是算数、几何、天文以及音乐这些门类的鼻祖,他提出万物皆数学的概念,认为世间万物的规律都能够用数学来解释,研究数学的目的不是为了使用它,而是为了探索宇宙的奥秘,以及发现这个世界的真理。他的思想为后来的数学定下了基准,认为数学必须是经过假设、演绎、推理和论证后的结论,才能称之为定理。
文章插图
公元前582年,毕达哥拉斯出生于古希腊萨摩斯岛,被我们中国人所熟知的,是他的毕达哥拉斯定理,也就是中国的“勾股定理”。中国数学史家钱宝琮先生在二十世纪五十年代,查找文献后提出的,中国人早就有了这个“毕达哥拉斯定理”,那就是勾股定理。商朝时期,周文王的儿子商高就提出了“勾三、股四、弦五”一说,要比毕达哥拉斯早500多年。后来在《周髀算经》中也有相似的记载,“若求斜至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得斜至日”,也就是我们数学当中,a2 b2=c2,此时与毕达哥拉斯所处同一个时代。但是陈子在《周髀算经》未能完成证明,证明工作要等到三国时期的赵爽来完成的。按照毕达哥拉斯的理论,假设、演绎、推理,论证之后才能算是定理,因此我们的勾股定理证明是在三国时期,要晚于古希腊时期的毕达哥拉斯。
文章插图
有些学者认为,毕达哥拉斯的理论来自于古埃及。1945年美国数学史家和天文史家诺伊格鲍尔,在研究巴比伦泥版的时候发现,巴比伦人在汉穆拉比时代就已经发现了毕达哥拉斯数组,这些数字一共有15行,4列数字组成。巴比伦是按照六十进制换算的,如果换算为十进制,完全就是勾股定理的数列,最高列到135002 127092=185412。和中国人一样,埃及人并没有推理、论证这些数字,而是把他们当作工具。
文章插图
这其实涉及到东西方文明理念上的区别,东方人认为有用的才叫知识,研究数学的目的是为了解决实际问题,因此数学和天文、立法等紧密联系在一起。但是希腊人就不同,他们纯粹为了研究数学,经常会为了一个问题锲而不舍。比如圆的直径为什么是相等的,等腰三角形底角为什么相的等等。这些在我们中国人看来就是钻牛角尖,毫无意义。但是在他们看来这就是推理,这是论证,这就是科学。古希腊的哲学和数学是密不可分的,柏拉图曾经说过数学是一切知识当中最高的形式,上帝都应该是一位几何数学家,柏拉图在他创建的柏拉图学院门口就立着一个牌子,不懂几何学的不准入内。他们认为要研究哲学,首先要学好数学。因此无论是中国的商高,还是巴比伦文明,都未能表明这些数字所代表的几何意义,不能说明他们已经掌握了毕达哥拉斯定理的。
文章插图
相对于定理的发现,定理的证明要困难得多,更为关键的是,定理的证明更能体现数学的本质。毕达哥拉斯学派完成的演绎证明在西方思想史上具有重要的意义,它几乎是件不合理的事情,因为人类凭经验、归纳、类比和实验已经获得了那么多高度可靠的知识。但希腊人需要真理,并觉得只有用无容置疑的演绎推理法才能获得真理。
文章插图
在古代文明当中我们确实能够观察到勾股数的存在,勾是三尺长,股是四尺长,弦长刚好就是五尺长了,可是这里面有个问题,古代测量是不准确的,有可能是3.01,也有可能是3.02,也就是说这个发现是巧合,刚好是一个整数,而且还不是无理数。如果我们遇到黄金分割点这种无理数,这个运算就非常困难了。很多假设,称不上定理,因为它不能够被推理,完成自洽的证明。但是这不代表这项发现没有用,比如牛顿第一定律,万有引力定律,在我们日常生活当中,这个定理是没有问题的,但是如果发展到量子领域,这个定理就不好用了,但是这不影响我们在生活当中去应用它。
推荐阅读
- 陈省身的数学人生开创几何新纪元,为中国数学教育打下坚实基础
- 如何直观地说明汉朝到底有多强大?
- 罗素:对平庸的崇拜是我们这个时代最大的恶之一
- 深度阅读,慧眼识金,找到宝藏
- 历史文化专家潜心40年编撰千年古灵渠研究手稿发布
- 快赏齐白石书法
- 把“穷”与“富”拆开看,原来如何致富古人早告诉我们了,千年无人知
- 经工集团党委开展革命传统教育
- 很快,我们的古典乐、民乐都将得到很好的传承和延续。“
- 成语故事:牛角挂书