- 主页 > 生活百科 > >
自学围棋的AlphaGo Zero,你也可以造一个
- 01遥想当年,AlphaGo的Master版本,在完胜柯洁九段之后不久,就被后辈AlphaGo Zero (简称狗零) 击溃了 。

文章插图
从一只完整不懂围棋的AI,到打败Master,狗零只用了21天 。
而且,它不须要用人类知识来豢养,成为顶尖棋手全靠自学 。

文章插图
如果能培养这样一只AI,即便自己不会下棋,也可以很自满吧 。
于是,来自巴黎的少年Dylan Djian (简称小笛) ,就照着狗零的论文去实现了一下 。

文章插图
他给自己的AI棋手起名SuperGo,也供给了代码 (传送门见文底)。
除此之外,还有教程——
一个身子两个头
智能体分成三个部分:
一是特点提取器 (Feature Extractor) ,二是策略网络 (Policy Network) ,三是价值网络(Value Network)。
于是,狗零也被亲热地称为“双头怪” 。特点提取器是身子,其他两个网络是头脑 。
特点提取器
特点提取模型,是个残差网络 (ResNet) ,就是给普通CNN加上了跳层衔接 (Skip Connection) , 让梯度的流传更加通畅 。

文章插图
跳跃的样子,写成代码就是:
1class BasicBlock(nn.Module):
2 """
3 Basic residual block with 2 convolutions and a skip connection
4 before the last ReLU activation.
5 """
6
7 def __init__(self, inplanes, planes, stride=1, downsample=None):
8 super(BasicBlock, self).__init__()
9
10 self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3,
11 stride=stride, padding=1, bias=False)
12 self.bn1 = nn.BatchNorm2d(planes)
13
14 self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
15 stride=stride, padding=1, bias=False)
16 self.bn2 = nn.BatchNorm2d(planes)
17
18
19 def forward(self, x):
20 residual = x
21
22 out = self.conv1(x)
23 out = F.relu(self.bn1(out))
24
25 out = self.conv2(out)
26 out = self.bn2(out)
27
28 out += residual
29 out = F.relu(out)
30
31 return out
然后,把它加到特点提取模型里面去:
1class Extractor(nn.Module):
2 def __init__(self, inplanes, outplanes):
3 super(Extractor, self).__init__()
4 self.conv1 = nn.Conv2d(inplanes, outplanes, stride=1,
5 kernel_size=3, padding=1, bias=False)
6 self.bn1 = nn.BatchNorm2d(outplanes)
7
8 for block in range(BLOCKS):
9 setattr(self, "res{}".format(block), \
10 BasicBlock(outplanes, outplanes))
11
12
13 def forward(self, x):
14 x = F.relu(self.bn1(self.conv1(x)))
15 for block in range(BLOCKS - 1):
16 x = getattr(self, "res{}".format(block))(x)
17
18 feature_maps = getattr(self, "res{}".format(BLOCKS - 1))(x)
19 return feature_maps
策略网络
策略网络就是普通的CNN了,里面有个批量尺度化 (Batch Normalization) ,还有一个全衔接层,输出概率散布 。

文章插图
1class PolicyNet(nn.Module):
2 def __init__(self, inplanes, outplanes):
3 super(PolicyNet, self).__init__()
4 self.outplanes = outplanes
5 self.conv = nn.Conv2d(inplanes, 1, kernel_size=1)
6 self.bn = nn.BatchNorm2d(1)
7 self.logsoftmax = nn.LogSoftmax(dim=1)
8 self.fc = nn.Linear(outplanes - 1, outplanes)
9
10
11 def forward(self, x):
12 x = F.relu(self.bn(self.conv(x)))
13 x = x.view(-1, self.outplanes - 1)
14 x = self.fc(x)
15 probas = self.logsoftmax(x).exp()
16
17 return probas
价值网络
这个网络稍微庞杂一点 。除了标配之外,还要再多加一个全衔接层 。最后,用双曲正切 (Hyperbolic Tangent) 算出 (-1,1) 之间的数值,来表现当前状况下的赢面多大 。

文章插图
代码长这样——
1class ValueNet(nn.Module):
2 def __init__(self, inplanes, outplanes):
3 super(ValueNet, self).__init__()
4 self.outplanes = outplanes
5 self.conv = nn.Conv2d(inplanes, 1, kernel_size=1)
6 self.bn = nn.BatchNorm2d(1)
7 self.fc1 = nn.Linear(outplanes - 1, 256)
推荐阅读
-
-
俊彦说历史|四个历代第一,创下德川将军之最,德川幕府末代将军
-
一起来护肤|好看的简历愁人,记住两个“不要”,口试成功一半,找工作不难
-
-
封面新闻|男子开保时捷越野硬冲积水桥洞熄火 网友调侃:卡宴变“卡淹”
-
雪莉妈妈|暗示智力发育好,将来很可能成为学霸,婴儿睡眠中出现四个小动作
-
大龄剩女|婚礼前夕凤凰男到大龄剩女家住了5天,女友:我孤独终老也不嫁你
-
|美国国债已突破26万亿美元,还能养得起11艘航母?原来我们被骗了
-
-
只此青绿在哪些城市巡演2022,只此青绿巡演时间表2022
-
手机中国库比多功能5s快蒸锅上架小米有品 熟得快一锅可多用
-
-
互联网人成长日记 恐面临牢狱之灾,瑞幸造假最新进展:董事长陆正耀参与做假实锤
-
-
-
不腻|做腊肉时,别只会放盐,记得加入4种料,腊肉鲜香入味,久吃不腻
-
-
一路顺风|竟然还有人说“不知道”,坐后排也要系安全带
-
-
中国新闻网|江西:使用指纹或人脸识别技术验证高考考生身份