图像|滴滴AI视觉团队获IEEE BigData2020道路损坏检测竞赛世界第三

DoNews10月22日消息(采访人员 翟继茹)22日 , 在近期结束的IEEE BigData2020 Global Road Damage Detection Challenge 2020道路损坏检测竞赛中 , 滴滴AI视觉团队获得了总分世界第三的成绩 。
滴滴介绍 , 滴滴AI视觉团队提出的CFM(Consistency Filtering Mechanism with Self-Supervised Methods)算法 , 在两个不同评测集中 , 以Test1得分0.6657 , 在全球80个参赛队伍中排名第二;Test2得分0.6219 , 在全球19个参赛队伍中排名第三 。
【图像|滴滴AI视觉团队获IEEE BigData2020道路损坏检测竞赛世界第三】据了解 , Global Road Damage Detection Challenge 2020道路损坏检测竞赛由IEEE BigData2020举办 , 主要针对日本、智利、印度等全球不同地区的交通道路损坏程度进行检测和分类的赛事 , 包括4种常见损坏类别:横向裂纹D00、纵向裂纹D10、龟裂纹D20、坑洼D40 。
图像|滴滴AI视觉团队获IEEE BigData2020道路损坏检测竞赛世界第三
文章图片

滴滴视觉AI技术部图像技术团队的CFM算法 , 采用了局部区域注意力学习机制 , 通过利用现有道路分割算法 , 获取城市道路图像的分割图像作为模板 , 动态叠加至训练数据集与测试数据集上 , 使得模型训练基于更丰富的语义信息 , 可具有更好的鲁棒性并提升目标检测的准确率 。 另外该算法还创新性的提出了一种置信度强化训练机制 , 采用一致性差异迭代训练的方法 , 即充分利用无标签数据中携带的一致性信息 , 进行自监督学习和训练 。 无标签图像通过一系列数据增强方法 , 例如Flip等 , 每张图像能够产生图像对 , 再分别通过预训练模型获得伪标签 。 利用伪标签的一致性分数筛选出部分可信的伪标签图像加入有标签数据进行迭代训练 。


    推荐阅读