什么是标准差,标准差反映了什么( 二 )


问题三:标准差表示什么? 标准差也称均方差,它表示各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根 。用σ表示 。因此,标准差也是一种平均数 。
标准差是方差的算术平方根 。
标准差能反映一个数据集的离散程度 。平均数相同的 , 标准差未必相同。
问题四:标准差和方差反映数据的什么特征? 10分 ?标准差反应数据的变化幅度,即上下左右波揣的剧烈程度 。在统计中可以用来计算某变量值的区间范围(即置信区间) 。
?方差:即标准差的平方 。
所以,标准差和方差两者没有本质区别 。
但是标准差和标准差系数(反应数据发生变化的可能性,即这种变化是否会经常发生 。)区别很大 。
问题五:阐述标准差与标准误的区别和联系 标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差.
标准偏差反映的是个体观察值的变异,标准误反映的是样本均数之间的变异(即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度),标准误不是标准差.
标准误用来衡量抽样误差.标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大.因此,标准误是统计推断可靠性的指标.
在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量.对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差.
标准差是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,标准差能反映一个数据集的离散程度.
标准差与标准误都是心理统计学的内容,两者不但在字面上比较相近,而且两者都是表示距离某一个标准值或中间值的离散程度,即都表示变异程度,但是两者是有着较大的区别的.
【什么是标准差,标准差反映了什么】首先要从统计抽样的方面说起.现实生活或者调查研究中,我们常常无法对某类欲进行调查的目标群体的所有成员都加以施测,而只能够在所有成员(即样本)中抽取一些成员出来进行调查,然后利用统计原理和方法对所得数据进行分析,分析出来的数据结果就是样本的结果,然后用样本结果推断总体的情况.一个总体可以抽取出多个样本,所抽取的样本越多,其样本均值就越接近总体数据的平均值.
标准差(standard deviation, STD)
表示的就是样本数据的离散程度.标准差就是样本平均数方差的开平方,标准差通常是相对于样本数据的平均值而定的,通常用M±SD来表示,表示样本某个数据观察值相距平均值有多远.从这里可以看到,标准差收到极值的影响.标准差越小,表明数据越聚集;标准差越大,表明数据越离散.标准差的大小因测验而定,如果一个测验是学术测验,标准差大,表示学生分数的离散程度大,更能够测量出学生的学业水平;如果一个侧样测量的是某种心理品质,标准差小,表明所编写的题目是同质的,这时候的标准差小的更好.标准差与正态分布有密切联系:在正态分布中,1个标准差等于正态分布下曲线的68.26%的面积,1.96个标准差等于95%的面积.这在测验分数等值上有重要作用.
标准误(standard error, SE)
表示的是抽样的误差.因为从一个总体中可以抽取出无多个样本,每一个样本的数据都是对总体的数据的估计.标准误代表的就是当前的样本对总体数据的估计,标准误代表的就是样本均数与总体均数的相对误差.标准误是由样本的标准差除以样本人数的开平方来计算的.从这里可以看到,标准误更大的是受到样本人数的影响.样本人数越大,标准误越小,那么抽样误差就越小,就表明所抽取的样本能够较好地代表样本.
问题六:样本的标准差可以反映总体的平均状态吗? 标准差反应的是样本总体偏离平均水平的情况
问题七:标准差如何反应收入分配 反映的是离散程度,其实它的定义就是距均值的欧氏距离 。。。。
标准差越大,说明收入分配的差距就越大 。
问题八:标准差计算方法 方差s^2=[(x1-x)^2+(x2-x)^2+.(xn-x)^2]/n
标准差=方差的算术平方根
标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标.
虽然样本的真实值是不能知道,但是每个样本总是会有一个真实值的,不管它究竟是多少.可以想象,一个好的检测方法,基检测值应该很紧密的分散在真实值周围.如不紧密,那距真实值的就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果.因此,离散度是评价方法的好坏的最重要也是最基本的指标.


推荐阅读