告知你不为人知的 UDP:连接性和负载均衡( 二 )


这里有个注意点要说明一下,由于UDP和下层协议都是不可靠的协议,所以,不能总是指望能够收到远端回复的ICMP包,例如:中间的一个节点或本机禁掉了ICMP,socket api调用就无法捕获这些错误了 。
2 UDP的负载均衡在多核(多CPU)的服务器中,为了充分利用机器CPU资源,TCP服务器大多采用accept/fork模式,TCP服务的MPM机制(multi processing module),不管是预先建立进程池,还是每到一个连接创建新线程/进程,总体都是源于accept/fork的变体 。然而对于UDP却无法很好的采用PMP机制,由于UDP的无连接性、无序性,它没有通信对端的信息,不知道一个数据包的前置和后续,它没有很好的办法知道,还有没后续的数据包以及如果有的话,过多久才会来,会来多久,因此UDP无法为其预先分配资源 。
2.1 端口重用SO_REUSEADDR、SO_REUSEPORT要进行多处理,就免不了要在相同的地址端口上处理数据,SO_REUSEADDR允许端口的重用,只要确保四元组的唯一性即可 。对于TCP,在bind的时候所有可能产生四元组不唯一的bind都会被禁止(于是,ip相同的情况下,TCP套接字处于TIME_WAIT状态下的socket,才可以重复绑定使用);对于connect,由于通信两端中的本端已经明确了,那么只允许connect从来没connect过的对端(在明确不会破坏四元组唯一性的connect才允许发送SYN包);对于监听listen端,四元组的唯一性油connect端保证就OK了 。
TCP通过连接来保证四元组的唯一性,一个connect请求过来,accept进程accept完这个请求后(当然不一定要单独accept进程),就可以分配socket资源来标识这个连接,接着就可以分发给相应的worker进程去处理该连接后续的事情了 。这样就可以在多核服务器中,同时有多个worker进程来同时处理多个并发请求,从而达到负载均衡,CPU资源能够被充分利用 。
UDP的无连接状态(没有已有对端的信息),使得UDP没有一个有效的办法来判断四元组是否冲突,于是对于新来的请求,UDP无法进行资源的预分配,于是多处理模式难以进行,最终只能“守株待兔“,UDP按照固定的算法查找目标UDP socket,这样每次查到的都是UDP socket列表固定位置的socket 。UDP只是简单基于目的IP和目的端口来进行查找,这样在一个服务器上多个进程内创建多个绑定相同IP地址(SO_REUSEADDR),相同端口的UDP socket,那么你会发现,只有最后一个创建的socket会接收到数据,其它的都是默默地等待,孤独地等待永远也收不到UDP数据 。UDP这种只能单进程、单处理的方式将要破灭UDP高效的神话,你在一个多核的服务器上运行这样的UDP程序,会发现只有一个核在忙,其他CPU核心处于空闲的状态 。创建多个绑定相同IP地址,相同端口的UDP程序,只会起到容灾备份的作用,不会起到负载均衡的作用 。
要实现多处理,那么就要改变UDP Socket查找的考虑因素,对于调用了connect的UDP Client而言,由于其具有了“连接”性,通信双方都固定下来了,那么内核就可以根据4元组完全匹配的原则来匹配 。于是对于不同的通信对端,可以查找到不同的UDP Socket从而实现多处理 。而对于server端,在使用SO_REUSEPORT选项(linux 3.9以上内核),这样在进行UDP socket查找的时候,源IP地址和源端口也参与进来了,内核查找算法可以保证:

  • [1] 固定的四元组的UDP数据包总是查找到同一个UDP Socket;
  • [2] 不同的四元组的UDP数据包可能会查找到不同的UDP Socket 。
这样对于不同client发来的数据包就能查找到不同的UDP socket从而实现多处理 。这样看来,似乎采用SO_REUSEADDR、SO_REUSEPORT这两个socket选项并利用内核的socket查找算法,我们在多核CPU服务器上多个进程内创建多个绑定相同端口,相同IP地址的UDP socket就能做到负载均衡充分利用多核CPU资源了 。然而事情远没这么顺利、简单 。
2.2 UDP Socket列表变化问题通过上面我们知道,在采用SO_REUSEADDR、SO_REUSEPORT这两个socket选项后,内核会根据UDP数据包的4元组来查找本机上的所有相同目的IP地址,相同目的端口的socket中的一个socket的位置,然后以这个位置上的socket作为接收数据的socket 。那么要确保来至同一个Client Endpoint的UDP数据包总是被同一个socket来处理,就需要保证整个socket链表的socket所处的位置不能改变,然而,如果socket链表中间的某个socket挂了的话,就会造成socket链表重新排序,这样会引发问题 。于是基本的解决方案是在整个服务过程中不能关闭UDP socket(当然也可以全部UDP socket都close掉,从新创建一批新的) 。要保证这一点,我们需要所有的UDP socket的创建和关闭都由一个master进行来管理,worker进程只是负责处理对于的网络IO任务,为此我们需要socket在创建的时候要带有CLOEXEC标志(SOCK_CLOEXEC) 。


推荐阅读