在这里顺便安利一下jupyter,pyecharts在v0.1.9.2版本开始,在jupyter上可以直接调用实例(例如上方直接调用bar.render_notebook())就可以将图表直接展示出来,非常方便 。
文章插图
如果脚本在非jupyter环境运行,图表渲染方法需改为:
bar.render()
默认情况下,pycharts生成图表为html格式,也支持生成png图片格式,如下:from snapshot_selenium import snapshot as driverfrom pyecharts import options as optsfrom pyecharts.charts import Barfrom pyecharts.render import make_snapshotdef bar_chart() -> Bar: c = ( Bar() .add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"]) .add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105]) .add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49]) .reversal_axis() .set_series_opts(label_opts=opts.LabelOpts(position="right")) .set_global_opts(title_opts=opts.TitleOpts(title="Bar-测试渲染图片")) ) return c# 需要安装 snapshot-selenium 或者 snapshot-phantomjsmake_snapshot(driver, bar_chart().render(), "bar.png")
文章插图
6. Pyecharts几种高频使用的可视化图表在上面官方示例中的柱状图表我们已经能感受到pycharts可视化功能的强大,最后再介始几种日常工作中常用的可视化图表及对应示例 。
6.1 Pie饼状图
from pyecharts import options as optsfrom pyecharts.charts import Piefrom pyecharts.faker import Fakerpie = ( Pie() .add("", [list(z) for z in zip(Faker.choose(), Faker.values())]) .set_colors(["blue", "green", "yellow", "red", "pink", "orange", "purple"]) .set_global_opts(title_opts=opts.TitleOpts(title="Pie-设置颜色")) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}")))pie.render_notebook()
文章插图
6.2 仪表盘
from pyecharts import options as optsfrom pyecharts.charts import Gaugeg = ( Gauge() .add("", [("完成率", 66.6)]) .set_global_opts(title_opts=opts.TitleOpts(title="Gauge-基本示例")))g.render_notebook()
文章插图
6.3 折线图
import pyecharts.options as optsfrom pyecharts.charts import Linefrom pyecharts.faker import Fakerc = ( Line() .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values(), is_smooth=True) .add_yaxis("商家B", Faker.values(), is_smooth=True) .set_global_opts(title_opts=opts.TitleOpts(title="Line-smooth")))c.render_notebook()
文章插图
6.4 K线图
from pyecharts import options as optsfrom pyecharts.charts import Klinedata = [ [2320.26, 2320.26, 2287.3, 2362.94], [2300, 2291.3, 2288.26, 2308.38], [2295.35, 2346.5, 2295.35, 2345.92], [2347.22, 2358.98, 2337.35, 2363.8], [2360.75, 2382.48, 2347.89, 2383.76], [2383.43, 2385.42, 2371.23, 2391.82], [2377.41, 2419.02, 2369.57, 2421.15], [2425.92, 2428.15, 2417.58, 2440.38], [2411, 2433.13, 2403.3, 2437.42], [2432.68, 2334.48, 2427.7, 2441.73], [2430.69, 2418.53, 2394.22, 2433.89], [2416.62, 2432.4, 2414.4, 2443.03], [2441.91, 2421.56, 2418.43, 2444.8], [2420.26, 2382.91, 2373.53, 2427.07], [2383.49, 2397.18, 2370.61, 2397.94], [2378.82, 2325.95, 2309.17, 2378.82], [2322.94, 2314.16, 2308.76, 2330.88], [2320.62, 2325.82, 2315.01, 2338.78], [2313.74, 2293.34, 2289.89, 2340.71], [2297.77, 2313.22, 2292.03, 2324.63], [2322.32, 2365.59, 2308.92, 2366.16], [2364.54, 2359.51, 2330.86, 2369.65], [2332.08, 2273.4, 2259.25, 2333.54], [2274.81, 2326.31, 2270.1, 2328.14], [2333.61, 2347.18, 2321.6, 2351.44], [2340.44, 2324.29, 2304.27, 2352.02], [2326.42, 2318.61, 2314.59, 2333.67], [2314.68, 2310.59, 2296.58, 2320.96], [2309.16, 2286.6, 2264.83, 2333.29], [2282.17, 2263.97, 2253.25, 2286.33], [2255.77, 2270.28, 2253.31, 2276.22],]k = ( Kline() .add_xaxis(["2017/7/{}".format(i + 1) for i in range(31)]) .add_yaxis("k线图", data) .set_global_opts( yaxis_opts=opts.AxisOpts(is_scale=True), xaxis_opts=opts.AxisOpts(is_scale=True), title_opts=opts.TitleOpts(title="K线图-基本示例"), ))k.render_notebook()
推荐阅读
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- python中68个内置函数,你了解吗?
- python的Django的DTL模板示例讲解
- Python开发环境配置
- Python协程还不理解?请收下这份超详细的异步编程教程
- 看我怎么通过Python脚本给100台网络设备一键化下发相同的配置
- 分享一款Docker可视化管理工具DockerUI
- 超级推荐如何拉动首页流量 淘宝超级推荐流量在哪里看得到
- 超级推荐里的钱可以退吗 超级推荐怎么退款
- 淘宝点击率低的原因 超级推荐点击率很低怎么办
- 超级推荐不能设置关键词吗 超级推荐怎么加关键词