美团是如何应用Spark处理大数据的?

前言
美团最初的数据处理以Hive SQL为主,底层计算引擎为MapReduce,部分相对复杂的业务会由工程师编写MapReduce程序实现 。随着业务的发展,单纯的Hive SQL查询或者MapReduce程序已经越来越难以满足数据处理和分析的需求 。
一方面,MapReduce计算模型对多轮迭代的DAG作业支持不给力,每轮迭代都需要将数据落盘,极大地影响了作业执行效率,另外只提供Map和Reduce这两种计算因子,使得用户在实现迭代式计算(比如:机器学习算法)时成本高且效率低 。
另一方面,在数据仓库的按天生产中,由于某些原始日志是半结构化或者非结构化数据,因此,对其进行清洗和转换操作时,需要结合SQL查询以及复杂的过程式逻辑处理,这部分工作之前是由Hive SQL结合Python脚本来完成 。这种方式存在效率问题,当数据量比较大的时候,流程的运行时间较长,这些ETL流程通常处于比较上游的位置,会直接影响到一系列下游的完成时间以及各种重要数据报表的生成 。
基于以上原因,美团在2014年的时候引入了Spark 。为了充分利用现有Hadoop集群的资源,我们采用了Spark on Yarn模式,所有的Spark App以及MapReduce作业会通过Yarn统一调度执行 。Spark在美团数据平台架构中的位置如图所示:

美团是如何应用Spark处理大数据的?

文章插图
 
下面将介绍Spark在美团的实践,包括基于Spark所做的平台化工作以及Spark在生产环境下的应用案例 。其中包含Zeppelin结合的交互式开发平台,也有使用Spark任务完成的ETL数据转换工具,数据挖掘组基于Spark开发了特征平台和数据挖掘平台,另外还有基于Spark的交互式用户行为分析系统以及在SEM投放服务中的应用,以下是详细介绍 。
Spark交互式开发平台
在推广如何使用Spark的过程中,我们总结了用户开发应用的主要需求:
数据调研:在正式开发程序之前,首先需要认识待处理的业务数据,包括:数据格式,类型(若以表结构存储则对应到字段类型)、存储方式、有无脏数据,甚至分析根据业务逻辑实现是否可能存在数据倾斜等等 。这个需求十分基础且重要,只有对数据有充分的掌控,才能写出高效的Spark代码;
代码调试:业务的编码实现很难保证一蹴而就,可能需要不断地调试;如果每次少量的修改,测试代码都需要经过编译、打包、提交线上,会对用户的开发效率影响是非常大的;
联合开发:对于一整个业务的实现,一般会有多方的协作,这时候需要能有一个方便的代码和执行结果共享的途径,用于分享各自的想法和试验结论 。
基于这些需求,我们调研了现有的开源系统,最终选择了Apache的孵化项目Zeppelin,将其作为基于Spark的交互式开发平台 。Zeppelin整合了Spark,Markdown,Shell,Angular等引擎,集成了数据分析和可视化等功能 。
美团是如何应用Spark处理大数据的?

文章插图
 
我们在原生的Zeppelin上增加了用户登陆认证、用户行为日志审计、权限管理以及执行Spark作业资源隔离,打造了一个美团的Spark的交互式开发平台,不同的用户可以在该平台上调研数据、调试程序、共享代码和结论 。
集成在Zeppelin的Spark提供了三种解释器:Spark、Pyspark、SQL,分别适用于编写Scala、Python、SQL代码 。对于上述的数据调研需求,无论是程序设计之初,还是编码实现过程中,当需要检索数据信息时,通过Zeppelin提供的SQL接口可以很便利的获取到分析结果;另外,Zeppelin中Scala和Python解释器自身的交互式特性满足了用户对Spark和Pyspark分步调试的需求,同时由于Zeppelin可以直接连接线上集群,因此可以满足用户对线上数据的读写处理请求;最后,Zeppelin使用Web Socket通信,用户只需要简单地发送要分享内容所在的http链接,所有接受者就可以同步感知代码修改,运行结果等,实现多个开发者协同工作 。
Spark作业ETL模板 除了提供平台化的工具以外,我们也会从其他方面来提高用户的开发效率,比如将类似的需求进行封装,提供一个统一的ETL模板,让用户可以很方便的使用Spark实现业务需求 。
美团目前的数据生产主体是通过ETL将原始的日志通过清洗、转换等步骤后加载到Hive表中 。而很多线上业务需要将Hive表里面的数据以一定的规则组成键值对,导入到Tair中,用于上层应用快速访问 。其中大部分的需求逻辑相同,即把Hive表中几个指定字段的值按一定的规则拼接成key值,另外几个字段的值以json字符串的形式作为value值,最后将得到的对写入Tair 。


推荐阅读