明朝为什么让努尔哈赤做大?努尔哈赤与明朝有什么样的关系
文章插图
我爱数学?
数学三大危机是什么?
文章插图
第一次数学危机是毕达哥拉斯悖论;
文章插图
毕达哥拉斯
第二次数学危机是贝克莱悖论;
文章插图
贝克莱
第三次数学危机是罗素悖论 。
文章插图
罗素
第一次数学危机:毕达哥拉斯悖论
毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理,也就是我们所说的勾股定理 。勾股定理指出直角三角形三边应有如下关系,即a^2=b^2+c^2,a和b分别代表直角三角形的两条直角边,c表示斜边 。
文章插图
a^2=b^2+c^2
然而不久毕达哥拉斯学派的一个学生希伯斯很快便发现了这个论断的问题 。他发现等腰直角三角形两直角边为1时,斜边永远无法用最简整数比(有理数)来表示,从而发现了第一个无理数,希伯斯推翻了毕达哥拉斯的着名理论 。相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希伯斯抛入大海 。
第一次数学危机极大地促进了几何学的发展,使几何学在此后两千年间成为几乎是全部严密数学的基础,这不能不说是数学思想史上的一次巨大革命 。
第二次数学危机:贝克莱悖论
十七世纪后期,牛顿和莱布尼兹创立了微积分,在实践中取得了巨大成功 。然而,微积分学产生伊始,迎来的并非全是掌声,在当时它还遭到了许多人的强烈攻击和指责,原因在于当时的微积分主要建立在无穷小分析之上,而无穷小后来证明是包含逻辑矛盾的 。因而,从微积分诞生时就遭到了一些人的反对与攻击 。其中攻击最猛烈的是英国大主教贝克莱 。
文章插图
微积分
第二次数学危机的出现,迫使数学家们不认真对待无穷小量△x,为了克服由此引起思维上的混乱,解决这一危机,无数人投入大量的劳动 。
第三次数学危机:罗素悖论
十九世纪下半叶,康托尔创立了着名的集合论,集合论是数学上最具革命性的理论,初衷是为整个数学大厦奠定坚实的基础 。可是1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的着名的罗素悖论 。这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机 。
文章插图
集合的几种关系
时至今日,第三次数学危机还不能说已从根本上消除了,因为数学基础和数理逻辑的许多重要课题还未能从根本上得到解决 。然而,人们正向根本解决的目标逐渐接近 。
文章插图
【明朝为什么让努尔哈赤做大?努尔哈赤与明朝有什么样的关系】你的点赞和关注是小编持续创作的动力!
推荐阅读
- 明朝为什么宦官专权?明朝的宦官
- 明朝功臣下场?明朝灭亡后大臣的下场
- 明成祖怎么上位的?明成祖评价
- 明朝亡于崇祯时期的原因有哪些?明朝灭亡是崇祯的错吗_6
- 曹操为什么杀杨修的六个故事?三国里面杨修是死于什么事件的
- 明朝在位时间最长的是哪一位?明朝在位时间最长的是谁
- 长沙|为什么现在的年轻人,都不惯着老板了
- 康熙王朝容妃死后康熙说了什么?容妃死后康熙让所有人陪葬
- 高考|男生骑外卖餐车参加高考 独自一人很淡定!画面让网友直呼励志
- 明朝有火器为什么会败?为什么明朝的火器一直没有重大突破