今日头条技术架构到底有多牛?

文章插图
【今日头条技术架构到底有多牛?】
一、产品背景
今日头条是为用户提供个性化资讯客户端 。下面就和大家分享一下当前今日头条的数据(据内部与公开数据综合):
- 5亿注册用户
- 2014年5月1.5亿,2015年5月3亿,2016年5月份为5亿 。几乎为成倍增长 。
- 日活4800万用户
- 2014年为1000万日活,2015年为3000万日活 。
- 日均5亿PV
- 5亿文章浏览,视频为1亿 。页面请求量超过30亿次 。
- 用户停留时长超过65分钟以上
我们日常产生原创新闻在1万篇左右,包括各大新闻网站和地方站,另外还有一些小说,博客等文章 。这些对于工程师来讲,写个Crawler并非困难的事 。
接下来,今日头条会用人工方式对敏感文章进行审核过滤 。此外,今日头条头条号目前也有为数不少的原创文章加入到了内容遴选队列中 。
接下来我们会对文章进行文本分析,比如分类,标签、主题抽取,按文章或新闻所在地区,热度,权重等计算 。
2、用户建模
当用户开始使用今日头条后,对用户动作的日志进行实时分析 。使用的工具如下:
- Scribe
- Flume
- Kafka
我们对用户的兴趣进行挖掘,会对用户的每个动作进行学习 。主要使用:
- Hadoop
- Storm
随着用户量的不断扩展大,用户模型处理的机器集群数量较大 。2015年前为7000台左右 。其中,用户推荐模型包括以下维度:
- 1 用户订阅
- 2 标签
- 3 部分文章打散推送
3、新用户的“冷启动”
今日头条会通过用户使用的手机,操作系统,版本等“识别” 。另外,比如用户通过社交帐号登录,如新浪微博,头条会对其好友,粉丝,微博内容及转发、评论等维度进行对用户做初步“画像” 。
分析用户的主要参数如下:
- 关注、粉丝关系
- 关系
- 用户标签
4、推荐系统
推荐系统,也称推荐引擎 。它是今日头条技术架构的核心部分 。包括自动推荐与半自动推荐系统两种类型:
1) 自动推荐系统
- 自动候选
- 自动匹配用户,如用户地址定位,抽取用户信息
- 自动生成推送任务
2)半自动推荐系统
- 自动选择候选文章
- 根据用户站内外动作
在还没有推出头条号时,内容主要是抓取其它平台的文章,然后去重,一年几百万级,并不太大 。主要是用户动作日志收集,兴趣收集,用户模型收集 。
资讯App的技术指标,比如屏幕滑动,用户是不是对一篇都看完,停留时间等都需要我们特别关注

文章插图
5、数据存储
今日头条使用MySQL或Mongo持久化存储+Memched(Redis),分了很多库(一个大内存库),亦尝试使用了SSD的产品 。
今日头条的图片存储,直接放在数据库中,分布式保存文件,读取的时候采用CDN 。
6、消息推送
消息推送,对于用户: 及时获取信息 。对运营来讲,能够 提??用户活跃度 。比如在今日头条推送后能够提升20%左右的DAU,如果没有推送,会影响10%左右 DAU(2015年数据) 。
推送后要关注的ROI:点击率,点击量 。能够监测到App卸载和推送禁用数量 。
今日头条推送的主要内容包括突发与热点咨讯,有人评论回复,站外好友注册加入 。
推荐阅读
- 技术总监夸我“索引”用的溜,我飘了......
- 茶树菇种植技术,举办阳光工程茶叶升级转型种植技术培训班
- |今日凌晨的三大利好正式出炉!(附公告)
- 茶园管理技巧,龙岩市茶叶技术人员深入茶区指导冬季茶园管理
- 茶树低位嫁接技术,如何嫁接和扦插山茶花
- 茶花树种植技术,贵州探索茶园套种铁皮石斛茶获得成功
- 滇红碎茶与南川红碎茶,南川红碎茶冲泡技术
- 网络安全必须要知道的17个技术知识点
- 人工智能技术或成为未来网络安全的引爆点和驱动力
- 大益第三代发酵技术,大益2007暗香