Sql Or NoSql?看完之后你就应该懂了( 三 )


比较简单的NoSql就是缓存:

Sql Or NoSql?看完之后你就应该懂了

文章插图
 
针对那些读远多于写的数据,引入一层缓存,每次读从缓存中读取,缓存中读取不到,再去数据库中取,取完之后再写入到缓存,对数据做好失效机制通常就没有大问题了 。通常来说,缓存是性能优化的第一选择也是见效最明显的方案 。
但是,缓存通常都是KV型存储且容量有限(基于内存),无法解决所有问题,于是再进一步的优化,我们继续引入其他NoSql:
Sql Or NoSql?看完之后你就应该懂了

文章插图
 
数据库、缓存与其他NoSql并行工作,充分发挥每种NoSql的特点 。当然NoSql在性能方面大大优于关系挺数据库的同时,往往也伴随着一些特性的缺失,比较常见的就是事务功能的缺失 。
下面看一下常用的NoSql及他们的代表产品,并对每种NoSql的优缺点和适用场景做一下分析,便于熟悉每种NoSql的特点,方便技术选型 。
KV型NoSql(代表----redis)
KV型NoSql顾名思义就是以键值对形式存储的非关系型数据库,是最简单、最容易理解也是大家最熟悉的一种NoSql,因此比较快地带过 。Redis、MemCache是其中的代表,Redis又是KV型NoSql中应用最广泛的NoSql,KV型数据库以Redis为例,最大的优点我总结下来就两点:
  • 数据基于内存,读写效率高
  • KV型数据,时间复杂度为O(1),查询速度快
因此,KV型NoSql最大的优点就是高性能,利用Redis自带的BenchMark做基准测试,TPS可达到10万的级别,性能非常强劲 。同样的Redis也有所有KV型NoSql都有的比较明显的缺点:
  • 只能根据K查V,无法根据V查K
  • 查询方式单一,只有KV的方式,不支持条件查询,多条件查询唯一的做法就是数据冗余,但这会极大的浪费存储空间
  • 内存是有限的,无法支持海量数据存储
  • 同样的,由于KV型NoSql的存储是基于内存的,会有丢失数据的风险
综上所述,KV型NoSql最合适的场景就是缓存的场景:
  • 读远多于写
  • 读取能力强
  • 没有持久化的需求,可以容忍数据丢失,反正丢了再查询一把写入就是了
例如根据用户id查询用户信息,每次根据用户id去缓存中查询一把,查到数据直接返回,查不到去关系型数据库里面根据id查询一把数据写到缓存中去 。
搜索型NoSql(代表----ElasticSearch)传统关系型数据库主要通过索引来达到快速查询的目的,但是在全文搜索的场景下,索引是无能为力的,like查询一来无法满足所有模糊匹配需求,二来使用限制太大且使用不当容易造成慢查询,搜索型NoSql的诞生正是为了解决关系型数据库全文搜索能力较弱的问题,ElasticSearch是搜索型NoSql的代表产品 。
全文搜索的原理是倒排索引,我们看一下什么是倒排索引 。要说倒排索引我们先看下什么是正排索引,传统的正排索引是文档-->关键字的映射,例如"Tom is my friend"这句话,会将其切分为"Tom"、"is"、"my"、"friend"四个单词,在搜索的时候对文档进行扫描,符合条件的查出来 。这种方式原理非常简单,但是由于其检索效率太低,基本没什么实用价值 。
倒排索引则完全相反,它是关键字-->文档的映射,我用张表格展示一下就比较清楚了:
Sql Or NoSql?看完之后你就应该懂了

文章插图
 
意思是我现在这里有"Tom is Tom"、"Tom is my friend"、"Thank you, Betty"、"Tom is Betty's husband"四句话,搜索引擎会根据一定的切分规则将这句话切成N个关键字,并以关键字的维度维护关键字在每个文本中的出现次数 。这样下次搜索"Tom"的时候,由于Tom这个词语在"Tom is Tom"、"Tom is my friend"、"Tom is Betty's husband"三句话中都有出现,因此这三条记录都会被检索出来,且由于"Tom is Tom"这句话中"Tom"出现了2次,因此这条记录对"Tom"这个单词的匹配度最高,最先展示 。这就是搜索引擎倒排索引的基本原理,假设某个关键字在某个文档中出现,那么倒排索引中有两部分内容:
  • 文档ID
  • 在该文档中出现的位置情况
可以举一反三,我们搜索"Betty Tom"这两个词语也是一样,搜索引擎将"Betty Tom"切分为"Tom"、"Betty"两个单词,根据开发者指定的满足率,比如满足率=50%,那么只要记录中出现了两个单词之一的记录都会被检索出来,再按照匹配度进行展示 。


推荐阅读