机器之心|一文探讨可解释深度学习技术在医疗图像诊断中的应用(11)
结合目前应用于医疗图像诊断中的两类可解释深度学习方法:属性方法和非属性方法 , 本文具体分析了几篇文章如何根据 CNN 特征、利用生成模型或注意力机制实现或分析医疗图像诊断的可解释性 。 从几篇文章的分析结果可以看出 , 每篇文章提出的方法针对的都是不同疾病图像、不同成像种类的图像 , 这也是深度学习 / 机器学习方法应用于医学领域的一个显著特点:方法是疾病 / 成像模式相关的 。 不同疾病的图像区别太大 , 目前的研究主要局限在针对具体疾病图像具体分析适用的可解释模型 / 方法 。 不过 , 这些方法都是可解释深度学习技术在医疗图像诊断领域中应用的有益探索 , 随着越来越多的研究人员关注可解释性 , 期望能推动深度学习技术在医学领域中的规模化推广应用 。
本文参考引用的文献:
[1] Singh, Amitojdeep , S. Sengupta , and V. Lakshminarayanan . "Explainable deep learning models in medical image analysis." Journal of Imaging 6.6(2020):52.https://arxiv.org/pdf/2005.13799.pdf
[2] Meyes, R.; de Puiseau, C.W.; Posada-Moreno, A.; Meisen, T. Under the Hood of Neural Networks: Characterizing Learned Representations by Functional Neuron Populations and Network Ablations. arXiv preprint arXiv:2004.01254 2020.
[3] Alber, M.; Lapuschkin, S.; Seegerer, P.; H?gele, M.; Schu?tt, K.T.e.a. iNNvestigate neural networks. Journal of Machine Learning Research 2019, 20, 1–8. http://arxiv.org/abs/1808.04260
[4] Kim, B.; Wattenberg, M.; Gilmer, J.; Cai, C.; Wexler, J.; Viegas, F.; Sayres, R. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav). arXiv preprint arXiv:1711.11279 2017.
[5] Lee, H.; Kim, S.T.; Ro, Y.M. Generation of Multimodal Justification Using VisualWord Constraint Model for Explainable Computer-Aided Diagnosis. In Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support; Springer, Cham, 2019; pp. 21–29.
[6]Van Molle, P.; De Strooper, M.; Verbelen, T.; Vankeirsbilck, B.; Simoens, P.; Dhoedt, B. Visualizing convolutional
neural networks to improve decision support for skin lesion classification. In Understanding and Interpreting
Machine Learning in Medical Image Computing Applications; Springer, Cham, 2018; pp. 115–123. https://arxiv.org/pdf/1809.03851.pdf
[7] Biffi, Carlo , et al. "Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling." (2018).
https://arxiv.org/pdf/1807.06843.pdf
[8] Zhang Z , Xie Y , Xing F , et al. MDNet: A Semantically and Visually Interpretable Medical Image Diagnosis Network[J]. 2017:3549-3557.https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhang_MDNet_A_Semantically_CVPR_2017_paper.pdf
[9] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015.
分析师介绍:
本文作者为仵冀颖 , 工学博士 , 毕业于北京交通大学 , 曾分别于香港中文大学和香港科技大学担任助理研究员和研究助理 , 现从事电子政务领域信息化新技术研究工作 。 主要研究方向为模式识别、计算机视觉 , 爱好科研 , 希望能保持学习、不断进步 。
关于机器之心全球分析师网络 Synced Global Analyst Network
推荐阅读
- 机器人|梅卡曼德机器人获得近亿元人民币B+轮融资
- |门罗币是什么?一文读懂匿名币霸主XMR
- 链得得|门罗币是什么?一文读懂匿名币霸主XMR | 币小宝区块链公开课
- 中年|最终幻想14:关于獭獭机器人,qqbot的一个疑问
- 融资并购,智能机器人|软银拟将机器人公司波士顿动力卖给现代汽车
- 智能机器人,虚拟现实|为汉科技VR(虚拟)焊接+真实焊枪+焊接仿真+VR(虚拟)机器人
- 中年|上游?互动丨“开放两江、智慧之城与区域价值”主题征丨致敬,机器人(外一首)- 张天国
- 智能机器人,黑科技|航天技术育种,机器人当农夫,农业生产尽显“科技范”
- AI人工智能|赋能百科之——华为机器视觉如何开启“创视纪”?
- 云计算|ModelArts平台加持,华为云在机器学习领域领先