上面的代码看起来都是按照相同的顺序来获得锁的,按道理来说是没有问题,但是上述代码中上锁的顺序取决于传递给transferMoney()的参数顺序,而这些参数顺序又取决于外部的输入
- 如果两个线程(A和B)同时调用transferMoney()
- 其中一个线程(A),从X向Y转账:transferMoney(myAccount,yourAccount,10);
- 另一个线程(B),从Y向X转账 :transferMoney(yourAccount,myAccount,20);
- 此时 A线程 可能获得 myAccount 的锁并等待 yourAccount的锁,然而 B线程 此时已经持有 yourAccount 的锁,并且正在等待 myAccount 的锁,这种情况下就会发生死锁 。
四、死锁的避免与检测
4.1 预防死锁
- 破坏互斥条件:使资源同时访问而非互斥使用,就没有进程会阻塞在资源上,从而不发生死锁
- 破坏请求和保持条件:采用静态分配的方式,静态分配的方式是指进程必须在执行之前就申请需要的全部资源,且直至所要的资源全部得到满足后才开始执行,只要有一个资源得不到分配,也不给这个进程分配其他的资源 。
- 破坏不剥夺条件:即当某进程获得了部分资源,但得不到其它资源,则释放已占有的资源,但是只适用于内存和处理器资源 。
- 破坏循环等待条件:给系统的所有资源编号,规定进程请求所需资源的顺序必须按照资源的编号依次进行 。
如果两个线程(A和B),当A线程已经锁住了Z,而又去尝试锁住X,而X已经被线程B锁住,线程A和线程B分别持有对应的锁,而又去争夺其他一个锁(尝试锁住另一个线程已经锁住的锁)的时候,就会发生死锁,如下图:
文章插图
两个线程试图以不同的顺序来获得相同的锁,如果按照相同的顺序来请求锁,那么就不会出现循环的加锁依赖性,因此也就不会产生死锁,每个需要锁Z和锁X的线程都以相同的顺序来获取Z和X,那么就不会发生死锁了,如下图所示:
文章插图
- 这样死锁就永远不会发生 。针对两个特定的锁,可以尝试按照锁对象的hashCode值大小的顺序,分别获得两个锁,这样锁总是会以特定的顺序获得锁,我们通过设置锁的顺序,来防止死锁的发生,在这里我们使用System.identityHashCode方法来定义锁的顺序,这个方法将返回由Obejct.hashCode 返回的值,这样就可以消除死锁发生的可能性 。
- 在极少数情况下,两个对象可能拥有两个相同的散列值,此时必须通过某种任意的方法来决定锁的顺序,否则可能又会重新引入死锁 。
- 为了避免这种情况,可以使用 “加时(Tie-Breaking))”锁,这获得这两个Account锁之前,从而消除了死锁发生的可能性
有一项技术可以检测死锁和从死锁中恢复过来,就是使用Lock类中的定时public boolean tryLock(long time, TimeUnit unit) throws InterruptedException功能,来代替内置锁机制,当使用内置锁的时候,只要没有获得锁,就会永远等待下去,而tryLock可以指定一个超时时间(Timeout),在等待超过时间后tryLock会返回一个失败信息,如果超时时限比获取锁的时间要长很多,那么就可以在发生某个意外后重新获得控制权 。如下图所示:
推荐阅读
- 梦见很精致的碗 梦见很多漂亮的碗盘子是什么意思
- 茶之五色
- 为什么很多看起来不是很复杂的网站,都需要大量顶尖高手来开发?
- 人生 幸好有茶
- thinkphp5多语言怎么切换
- 开网店可以赚到钱吗 一般新手开网店能赚多少钱
- 天生发质不好怎么办
- 肝功能阳性是什么意思
- 茶与武侠
- 茶与红尘