AI人工智能|AI技术在音乐类产品中的应用场景:你听的歌是AI写的?
编辑导读:你有没有想过 , 也许有一天 , 我们听的音乐都是AI作曲作词演唱的 。随着AI人工智能的发展 , 它在各行各样的应用也越来越深度 。在未来 , AI在音乐类的产品会有怎样的应用场景呢?本文将从四个方面展开分析 , 希望对你有帮助 。
文章图片
文章图片
自动标注、平滑过渡、音乐鉴权、AI创作 , 当AI技术应用于音乐行业为人类的精神文化与娱乐生活带来便利和更多选择时 , 也是一件让人激动不已的事情 。
随着深度学习算法的出现、大数据和5G技术的成熟 , AI人工智能已逐渐融入我们的生产生活中 , 在教育、医疗、政务办公、城市管理等多个方面发挥作用 。
随着AI技术在音乐行业研究及应用的深入 , 音乐人工智能已经不新鲜 , 很多新的应用和产品已经惊艳亮相 。
基于对于音乐技术及产品的了解 , 简单梳理一下目前AI技术在音乐类产品的各类应用场景 。
一、自动标注
当平台曲库量达到?定量级时 , 如果再依赖传统的?为打标签模式就会花费?量成本且受到主观影响较? 。?频?动标注相关技术就受到?泛关注 , ?动标注的作?不仅仅只是能替代??标注以达到节省成本 , 同时可以客观评价?乐内容 , 因此还可以拓展到流媒体播放的?乐推荐?? 。
例如:Spodify、KKBOX都有利?深度学习做推荐 , 其中KKBOX采??频?件、歌词以及?户相关标注和评论等数据作为输?从曲?、场景及情绪等多个维度来判断?乐是否满?推荐的条件 。?般的?动标注功能也和KKBOX的推荐维度类似 , 从曲?、应?场景、器乐和情绪等维度来进?标注 。
文章图片
文章图片
(示例:笔者所在公司旗下平台 , 关于音乐标注的标签)
对于?动标注 , 笔者也在?上听到过一些不太专业的吐槽 , 比如之前有看到说音频自动标注可能会出现将一首歌曲的情绪同时标注为“欢乐”和“悲伤”两种情绪 。
在解释这?原因之前 , 可以简单普及?下机器学习中分类器、单标签多分类任务和多标签多分类任务 。
简单来说 , 分类器就是利?已知的输?和输出数据来训练 , 然后该分类器就会对未知的输?数据进?分类或输出?个值 。对于?个分类器模型 , 它预测的结果是2个或?于2个以上的(结果只有1个代表结果确定就不需要分类模型了) 。如果可能的结果数为2称之为?分类任务?于2就是多分类任务;对于情绪可能有:?亢、欢快、安静、悲伤等多个结果 , 因此情绪分类是?个多分类任务 。
如果认为情绪模型是?个单标签多分类任务 , 那么绝对是不可能出现”欢乐“和”悲伤”同时出现的情况 。如果同时出现“欢乐”和“悲伤” , 则只能存在于多标签多分类任务 。
?“欢乐”和“悲伤”同时出现就?定是错误的吗?也不?定!
基于深度学习的?乐处理?式?般是分段处理 , 也就是将???乐划分为多个?段然后对每?个?段进?预测判断它可能的标签 。如果??歌曲情绪存在波动 , 比如一首歌曲的情绪从开始的“欢乐”转向了“悲伤” , 那么这种情况也是完全可能出现 , 现实?活中很多歌曲的确是存在多个情绪甚?互斥的标签存在的情况 。
二、平滑过渡
平滑过渡功能是近?年新出现的“炫酷”功能 。
简单理解 , 就是当??歌曲快要播放完毕时下??歌曲可能?缝接? , 这种歌曲间的平滑过渡 , 不会让听众觉得非常突兀 。
这种功能的实现 , 也有依赖于基于深度学习的技术 。
?致原理是将歌曲的末尾?段和可能平滑过渡的其他歌曲的头部?段作为训练样本 。训练出来的模型可以预测当前输??段可以过渡的下?个?段 , 然后当播放器播放?歌曲尾部?段的时候利?该模型得到可平滑过渡的下??歌曲 。
推荐阅读
- 人工智能|第二届中国超级算力大会在京举行
- 电池技术,相机发烧|防爆相机多少钱能买到?
- 行业互联网|深圳第22届高交会闭幕:一大批新技术新成果集中亮相
- 超能网|亚马逊转用自家芯片进行人工智能训练,只剩少量程序仍然以显卡来训练
- 电池技术|动能转换看烟台|有锂电池的地方就有创为
- 行业互联网|2020十大新兴技术揭晓!每一项都可能颠覆我们的生活
- 行业互联网|英国运输技术论坛发布网络安全标准和指南摘要
- 钉科技|“选择性过滤”太难?方太“死磕”8年突破净水技术
- 东方晨曦园|以色列公司推出无耳机传输音乐
- 音乐|泛文娱音乐赛道热闹非凡 闪歌另辟蹊径瞄准零门槛原创音乐社区