「」不同机器学习模型的决策边界(附代码)( 三 )
####################################################################################################################################################################### params_lightGBM %mutate(modeln = str_c('mod', row_number()))%>%pmap(~{xname = ..1yname = ..2modelname = ..3df %>%select(Species, xname, yname) %>%group_by(grp = 'grp') %>%nest() %>%mutate(models = map(data, ~{list(# Logistic ModelModel_GLM = { glm(Species ~ ., data = http://news.hoteastday.com/a/.x, family = binomial(link='logit'))},# Support Vector Machine (linear)Model_SVM_Linear = {e1071::svm(Species ~ ., data = http://news.hoteastday.com/a/.x,type ='C-classification', kernel = 'linear')},# Support Vector Machine (polynomial)Model_SVM_Polynomial = {e1071::svm(Species ~ ., data = http://news.hoteastday.com/a/.x,type ='C-classification', kernel = 'polynomial')},# Support Vector Machine (sigmoid)Model_SVM_radial = {e1071::svm(Species ~ ., data = http://news.hoteastday.com/a/.x,type ='C-classification', kernel = 'sigmoid')},# Support Vector Machine (radial)Model_SVM_radial_Sigmoid = {e1071::svm(Species ~ ., data = http://news.hoteastday.com/a/.x,type ='C-classification', kernel = 'radial')},# Random ForestModel_RF = {randomForest::randomForest(formula = as.factor(Species) ~ ., data = http://news.hoteastday.com/a/.)},# Extreme Gradient BoostingModel_XGB = {xgboost(objective ='binary:logistic',eval_metric = 'auc',data = http://news.hoteastday.com/a/as.matrix(.x[, 2:3]),label = as.matrix(.x$Species), # binary variablenrounds = 10)},# Kera Neural NetworkModel_Keras = {mod %layer_dense(units = 2, activation ='relu', input_shape = 2) %>%layer_dense(units = 2, activation = 'sigmoid')mod %>% compile(loss = 'binary_crossentropy',optimizer_sgd(lr = 0.01, momentum = 0.9),metrics = c('accuracy'))fit(mod,x = as.matrix(.x[, 2:3]),y = to_categorical(.x$Species, 2),epochs = 5,batch_size = 5,validation_split = 0)print(modelname)assign(modelname, mod)},# Kera Neural NetworkModel_Keras_2 = {mod %layer_dense(units = 2, activation = 'relu', input_shape = 2) %>%layer_dense(units = 2, activation = 'linear', input_shape = 2) %>%layer_dense(units = 2, activation = 'sigmoid')mod %>% compile(loss = 'binary_crossentropy',optimizer_sgd(lr = 0.01, momentum = 0.9),metrics = c('accuracy'))fit(mod,x = as.matrix(.x[, 2:3]),y = to_categorical(.x$Species, 2),epochs = 5,batch_size = 5,validation_split = 0)print(modelname)assign(modelname, mod)},# Kera Neural NetworkModel_Keras_3 = {mod %layer_dense(units = 2, activation = 'relu', input_shape = 2) %>%layer_dense(units = 2, activation = 'relu', input_shape = 2) %>%layer_dense(units = 2, activation = 'linear', input_shape = 2) %>%layer_dense(units = 2, activation = 'sigmoid')mod %>% compile(loss = 'binary_crossentropy',optimizer_sgd(lr = 0.01, momentum = 0.9),metrics = c('accuracy'))fit(mod,x = as.matrix(.x[, 2:3]),y = to_categorical(.x$Species, 2),epochs = 5,batch_size = 5,validation_split = 0)print(modelname)assign(modelname, mod)},# LightGBM modelModel_LightGBM = {lgb.train(data = http://news.hoteastday.com/a/lgb.Dataset(data = as.matrix(.x[, 2:3]), label = .x$Species),objective ='binary',metric = 'auc',min_data = http://news.hoteastday.com/a/1#params = params_lightGBM,#learning_rate = 0.1)})}))}) %>%map(., ~unlist(., recursive = FALSE))校准数据
推荐阅读
- 长旭数码华为三款值得买的5G手机,不同价位,入手正当时
- 『学霸』学渣变学霸:教育界证明最有效的4个学习方法,建议家长收藏
- 【物理】初二发力学习,初三语文成绩才能逆袭,别让你的小聪明耽误了语文
- 「小学语文」100篇小学语文阅读理解及答案,孩子学习用得上!
- 带你吃瓜做个无情的尖叫机器啊啊——任嘉伦《琵琶行》造型大片抢先看,200505
- 鹏亮体育汇但结局不同。金子轩很高兴,蓝湛却很痛苦,陈情令:四个人出身高贵
- 「邓伦」《极限挑战》开播,邓伦待遇与众不同,极挑最靓的仔真的可以
- 「经济」山东省提出的和村并居,相比新农村有什么不同吗?看完后瞬间明白了
- #苏亚雷斯#皇马7号、巴萨9号回归对比照,球迷:苏亚雷斯,你该向阿扎尔学习了!
- 军人驿站国际观察俄土科技差距显露无疑,美称此战可载入史册,叙利亚爆发机器人大战
